پیش بینی شاخص بورس اوراق بهادار تهران با استفاده از شبکه های عصبی
نویسندگان
چکیده مقاله:
اندازه و روند شاخصهای قیمت سهام یکی از مهمترین عوامل تاثیرگذار بر تصمیمات سرمایه گذاران در بازارهای مالی میباشد. جهت پیشبینی بازار از تکنیکهای مختلفی استفاده شده است که معمولترین آنها روشهای رگرسیون و مدلهای 3ARIMA هستند اما این مدلها در عمل جهت پیشبینی بعضی از سریها ناموفق بودهاند. در تحقیق حاضر برای پیشبینی شاخص کل بورس از مدل شبکههای عصبی پیش خور4 با قانون یادگیری پس انتشار خطا5 در سه ساختار شبکه با الگوهای متفاوت ورودی استفاده گردید و نتایج مدل با نتایج مدلهای رگرسیون چند متغیره و مدلهای ARIMA مورد مقایسه قرار گرفت. نتایج تحقیق نشان داد که روش شبکههای عصبی خطای RMSE به میزان قابل توجهی کمتر از RMSE روشهای دیگر است و در بازار بورس اوراق بهادارتهران پیشبینی کوتاه مدت با فاصله زمانی کمتر، مناسبتر از پیشبینی بلند مدت با فاصله زمانی طولانی تر است. 3. autoregressive integrated moving average 4. Feed Forward Neural network 5. back propagation
منابع مشابه
پیش بینی شاخص سهام با استفاده از شبکه های عصبی موجکی در بورس اوراق بهادار تهران
در این تحقیق شاخص کل سهام بورس اوراق بهادار تهران با استفاده از مدلهای مختلف شبکه های عصبی پیش بینی شده است. تحقیق از نوع کاربردی است و دورۀ زمانی انجام تحقیق از ابتدای سال 81 تا پایان سال 90 است. گردآوری اطلاعات از طریق آمار و دادههای موجود در پایگاه اطلاعاتی در بورس اوراق بهادار تهران صورت گرفته است. برای ایجاد مدل wdbp از موجک db5 برای نویززدایی دادهها و تا پنج مرحله صورت گرفته است. جذر م...
متن کاملپیش بینی شاخص بورس اوراق بهادار تهران با استفاده از شبکه های عصبی مصنوعی
پژوهش حاضر به مطالعه پیش بینی شاخص قیمت سهام در بورس اوراق بهادار تهران به وسیله شبکه های عصبی و ارایه ی شواهدی مبنی بر رفتار آشوبناک شاخص قیمت در بورس اوراق بهادار می پردازد. دو مجموعه از داده ها برای ورودی شبکه عصبی انتخاب شده اند. وقفه های مختلفی از شاخص و عوامل کلان اقتصادی به عنوان متغیرهای مستقل. شبکه های عصبی به کار گرفته شده در این پژوهش از نوع پرسپترون چند لایه (mlp) است که به روش الگو...
متن کاملپیش بینی قیمت سهام شرکت های بورس اوراق بهادار تهران با استفاده از شبکه های عصبی مصنوعی
پیشبینی تغییر قیمت سهام به عنوان یک فعالیت چالشانگیز در پیشبینی سریهای زمانی مالی در نظر گرفته میشود. یک پیشبینی صحیح از تغییر قیمت سهام میتواند سود زیادی را برای سرمایهگذاران به بار آورد. با توجه به پیچیدگی دادههای بازار بورس، توسعه مدلهای کارآمد برای پیشبینی بسیار دشوار است. در این پژوهش، مدلی برای پیشبینی قیمت سهام شرکتهای بورس اوراق بهادار تهران با بکارگیری دادههای درونزا...
متن کاملارائه مدل پیش بینی شاخص کل قیمت سهام با رویکرد شبکه های عصبی (مطالعه موردی: بورس اوراق بهادار تهران)
هدف تحقیق حاضر ارائه مدل پیشبینی شاخص قیمت سهام در بورس اوراق بهادار با استفاده از شبکههای عصبی مصنوعی است. بر این اساس، شاخص صنعت، شاخص مالی و شاخص بازده نقدی به صورت سالانه به عنوان متغیرهای ورودی (مستقل) طرح شد. برای ارزیابی مدل شبکه عصبی از طرح MLP با الگوریتم آموزش پس انتشار و مدل چند عاملی بهره گرفته شده است. نتایج نشان میدهد که مدل شبکه عصبی پیشنهادی، توانایی بالایی در پیشبینی شاخص ...
متن کاملپیش بینی بازده شاخص بورس اوراق بهادار با استفاده از مدلهای شبکه ها عصبی مصنوعی شعاع پایه
تا کنون برای پیش بینی بازده سهام و بازده شاخص از روش های متعددی استفاده شده است در این میان هوش مصنوعی و شبکه های عصبی مصنوعی یکی از روش های پیش بینی بازده شاخص بوده است. در حال حاضر به دنبال بررسی عملکرد شبکه عصبی شعاع پایه برای پیشبینی بازده شاخص هستیم. بدین منظور از شاخص بورس اوراق بهادار تهران استفاده شده است و عملکرد شبکه عصبی شعاع پایه و شبکه عصبی پرسپترون مقایسه شدهاند. نوع آزمون عملکر...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 9
صفحات 191- 212
تاریخ انتشار 2009-06-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023